A Signal-Processing Pipeline for Magnetoencephalography Resting-State Networks
نویسندگان
چکیده
To study functional connectivity using magnetoencephalographic (MEG) data, the high-quality source-level reconstruction of brain activity constitutes a critical element. MEG resting-state networks (RSNs) have been documented by means of a dedicated processing pipeline: MEG recordings are decomposed by independent component analysis (ICA) into artifact and brain components (ICs); next, the channel maps associated with the latter ones are projected into the source space and the resulting voxel-wise weights are used to linearly combine the IC time courses. An extensive description of the proposed pipeline is provided here, along with an assessment of its performances with respect to alternative approaches. The following investigations were carried out: (1) ICA decomposition algorithm. Synthetic data are used to assess the sensitivity of the ICA results to the decomposition algorithm, by testing FastICA, INFOMAX, and SOBI. FastICA with deflation approach, a standard solution, provides the best decomposition. (2) Recombination of brain ICs versus subtraction of artifactual ICs (at the channel level). Both the recombination of the brain ICs in the sensor space and the classical procedure of subtracting the artifactual ICs from the recordings provide a suitable reconstruction, with a lower distortion using the latter approach. (3) Recombination of brain ICs after localization versus localization of artifact-corrected recordings. The brain IC recombination after source localization, as implemented in the proposed pipeline, provides a lower source-level signal distortion. (4) Detection of RSNs. The accuracy in source-level reconstruction by the proposed pipeline is confirmed by an improved specificity in the retrieval of RSNs from experimental data.
منابع مشابه
Dynamic recruitment of resting state sub-networks
Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our und...
متن کاملAdding dynamics to the Human Connectome Project with MEG
The Human Connectome Project (HCP) seeks to map the structural and functional connections between network elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of information on brain network dynamics and represents one source of functional connectivity data to be provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the re...
متن کاملSparse Predictive Structure of Deconvolved Functional Brain Networks
The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated highdimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution ...
متن کاملApplication of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II
The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...
متن کاملTask- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity
Large-scale networks support the dynamic integration of information across multiple functionally specialized brain regions. Network analyses of haemodynamic modulations have revealed such functional brain networks that show high consistency across subjects and different cognitive states. However, the relationship between the slowly fluctuating haemodynamic responses and the underlying neural me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain connectivity
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2011